使用场景
使用kan-gpt生成文章摘要
利用kan-gpt进行对话系统开发
将kan-gpt应用于文本内容推荐系统
产品特色
支持从PyPI安装
提供使用示例和开发指南
允许自定义模型配置,如模型类型和词汇量大小
集成了GPT2Tokenizer,方便文本编码和解码
支持生成文本,可以用于各种文本生成任务
提供了训练脚本,可以用于训练模型
支持使用WANDB进行实验跟踪
使用教程
步骤1:通过git clone命令下载仓库
步骤2:根据需要下载数据集,如WebText或Tiny Shakespeare
步骤3:安装依赖,运行pip install -r requirements.txt
步骤4:使用提供的脚本进行模型训练或生成文本
步骤5:根据具体应用场景调整模型配置和训练参数