使用场景
教育工作者使用Cantor分析科学问题,提高教学内容的准确性
研究人员利用Cantor的多模态CoT框架,解决视觉推理领域的难题
学生通过Cantor学习如何整合视觉信息和逻辑推理,提高解决问题的能力
产品特色
感知决策架构,有效整合视觉上下文和逻辑推理
决策生成阶段,考虑并部署问题
执行模块化阶段,调用各种专家模块并提供补充信息
执行综合阶段,汇总补充信息,通过合理详细的思考生成最终答案
在ScienceQA数据集上,使用GPT-3.5作为基础LLM,Cantor实现了82.39%的准确率,比CoT提示的GPT-3.5提高了4.08%
在MathVista数据集上,Cantor在几乎所有类型的问题上都大大超过了基线,显示了正确的决策和模块专家可以激发其精细、深入的视觉理解和组合推理能力
Cantor在多模态领域取得进展,基于GPT-3.5的Cantor在各种问题上显著超过了基线,甚至超过了知名的MLLMs,如SPHINX和LLaVA-1.5
使用教程
访问Cantor的官方网站或GitHub页面
阅读Cantor的介绍和背景信息,了解其功能和优势
根据需要选择相应的大型语言模型(MLLMs)作为基础
上传或选择需要分析的图像和问题
Cantor将自动进行决策生成和执行模块化
查看Cantor生成的最终答案和推理过程
根据Cantor的输出结果,进行进一步的研究或教学活动