使用场景
用于图像生成和风格转换的研究项目
在自然语言处理任务中作为基础模型架构
作为教育工具,帮助学生理解大规模神经网络的工作原理
产品特色
提供PyTorch模型定义
包含预训练权重
支持训练和采样代码
支持大规模参数扩展
优化的推理能力
提供专家路由分析工具
包含合成数据生成脚本
使用教程
1. 访问GitHub页面,克隆或下载DiT-MoE模型代码。
2. 根据提供的README.md文件设置运行环境。
3. 使用提供的脚本进行模型训练或采样。
4. 利用专家路由分析工具来优化模型性能。
5. 根据需要调整配置文件,以适应不同的训练或推理任务。
6. 运行合成数据生成脚本,以增强模型的泛化能力。
7. 分析和评估模型性能,根据结果进行进一步的模型调优。