使用场景
生成一个关于‘一只猫看着一只黑色的老鼠’的视频,展示不同提示间的平滑过渡。
通过DiTCtrl生成一个长视频,内容为‘海洋中的鱼’,展示视频的连贯性和动态效果。
使用DiTCtrl进行视频编辑,将视频中的‘白色SUV’替换为‘红色跑车’,同时保持视频的原始构图。
产品特色
• 无需训练的多提示视频生成:DiTCtrl能够在无需额外训练的情况下,根据多个连续提示生成视频。
• 平滑过渡和一致性:视频生成过程中实现了对象运动的连贯性和场景之间的平滑过渡。
• 多模态扩散变换器架构:基于MM-DiT架构,DiTCtrl展现了与UNet类似的自注意力机制,并增强了时间建模能力。
• 精确的语义控制:通过注意力机制的分析,DiTCtrl能够实现不同提示间的精确语义控制。
• 视频编辑功能:DiTCtrl可以应用于视频编辑任务,如文字替换和视频重权。
• 长视频生成:DiTCtrl能够通过设置相同的连续提示,自然地工作在单提示长视频生成上。
• 电影风格的过渡效果:DiTCtrl能够展示电影风格的过渡效果,如男孩骑行序列的描绘。
使用教程
1. 准备多个连续的视频提示,作为视频生成的输入。
2. 使用DiTCtrl模型,将这些提示输入模型中。
3. 模型将分析每个提示的语义内容,并在内部进行注意力机制的计算。
4. 模型生成视频的初始潜在表示,包括多个提示的视频内容。
5. 通过模型的去噪过程,将全注意力转换为遮罩引导的KV共享策略,以查询源视频中的视频内容。
6. 根据修改后的目标提示,合成内容一致的视频。
7. 观察生成的视频,检查过渡的平滑性和对象运动的连贯性。
8. 如有需要,可以对生成的视频进行进一步的视频编辑,如文字替换或视频重权。