AIGC的核心技术有哪些?
1、基础模型
1、深度变分自编码(VAE) | 2013年 | 图像生成、语音合成 |
2、生成对抗神经网络(GAN) | 2014年 | 图像生成、语音合成 |
3、扩散模型(Diffusion Model) | 2015年 | 图像生成 |
4、Transformer | 2017年 | 语言模型 |
5、Vision Transformer(ViT) | 2020年 | 视觉模型 |
(1)变分自编码(Variational Autoencoder,VAE)
变分自编码器是深度生成模型中的一种,由Kingma等人在2014年提出,与传统的自编码器通过数值方式描述潜空间不同,它以概率方式对潜在空间进行观察,在数据生成方面应用价值较高。
VAE分为两部分,编码器与解码器。编码器将原始高维输入数据转换为潜在空间的概率分布描述;解码器从采样的数据进行重建生成新数据。
